If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-84x+12=0
a = 10; b = -84; c = +12;
Δ = b2-4ac
Δ = -842-4·10·12
Δ = 6576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6576}=\sqrt{16*411}=\sqrt{16}*\sqrt{411}=4\sqrt{411}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-4\sqrt{411}}{2*10}=\frac{84-4\sqrt{411}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+4\sqrt{411}}{2*10}=\frac{84+4\sqrt{411}}{20} $
| 92+22x=117 | | -60=20+2m+8m–30 | | 12x-9x-4=-3x+11 | | –2z–11=–5z+7 | | 4(2x+5)=2(4x+3)+x | | –2q−8=–10q | | 6−s=–2s | | 10x-5(3x-10)=55 | | 11=u+20 | | d/6=3=9 | | 6x-12-10x=9+3x | | 5(2x+2)=2(5x+3)+1 | | 3(7+8k)=189 | | -5k+10=-8+1k | | 198=-4x+2(-6+15) | | x^2+2x-5.29=0 | | 6x-42=90x | | 2y+5/2=7/2 | | 3x-2+5x+4=6x+12 | | 30-x=40x2 | | 5x=180-130 | | 5×1x=8×.75x | | 19x−(–12x)−(–4x)−19x=(–16) | | 10x-7x+5=5x+21 | | 6(-2x-10)=60 | | 5x-2(x-1)=-11 | | 6m+22=12m+4 | | 9=-4g+13 | | 7x+40=3x+112+180 | | x-5x-10=9=9+2x-7 | | 3x+10=5(x+2)+2x | | 3.2x-14.7=-8.3 |